Simulated Binary Crossover for Continuous Search Space

نویسندگان

  • Kalyanmoy Deb
  • Ram Bhushan Agrawal
چکیده

Abst ract . T he success of binary-coded gene t ic algorithms (GA s) in problems having discrete sear ch space largely depends on the coding used to represent the prob lem var iables and on the crossover ope ra tor that propagates buildin g blocks from parent strings to children st rings . In solving optimization problems having continuous search space, binary-coded GAs discr et ize the search space by using a coding of the problem var iables in binary strings. However , t he coding of realvalued vari ables in finit e-length st rings causes a number of difficulties: inability to achieve arbit rary pr ecision in the obtained solution , fixed mapping of problem var iab les, inh eren t Hamming cliff problem associated wit h binary coding, and processing of Holland 's schemata in cont inuous search space. Although a number of real-coded GAs are developed to solve optimization problems having a cont inuous search space, the search powers of these crossover operators are not adequate . In t his paper , t he search power of a crossover operator is defined in terms of the probability of creating an arbitrary child solut ion from a given pair of parent solutions . Motivated by the success of binarycoded GAs in discrete search space problems , we develop a real-coded crossover (which we call the simulated binar y crossover , or SBX) operator whose search power is similar to that of the single-point crossover used in binary-coded GAs . Simulation results on a nu mber of realvalued test problems of varying difficulty and dimensionality suggest t hat the real-cod ed GAs with the SBX operator ar e ab le to perfor m as good or bet ter than binary-cod ed GAs wit h the single-po int crossover. SBX is found to be particularly useful in problems having mult ip le optimal solutions with a narrow global basin an d in prob lems where the lower and upper bo unds of the global optimum are not known a priori. Further , a simulation on a two-var iable blocked function shows that the real-coded GA with SBX work s as suggested by Goldberg

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connecting Yule Process, Bisection and Binary Search Tree via Martingales

We present new links between some remarkable martingales found in the study of the Binary Search Tree or of the bisection problem, looking at them on the probability space of a continuous time binary branching process.

متن کامل

A Novel Experimental Analysis of the Minimum Cost Flow Problem

In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...

متن کامل

Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems

Real-coded genet ic algorit hms (GAs) do not use any coding of the problem variab les, instead they work dir ectly with the variab les . The main difference in the implementation of real-coded GAs and binary-coded GAs is in their recombination op erators. Alt ho ugh a number of real-cod ed crossover implementations were suggested, most of them were developed wit h intuition and wit hout much an...

متن کامل

A Continuous Genetic Algorithm Designed for the Global Optimization of Multimodal Functions

Genetic algorithms are stochastic search approaches based on randomized operators, such as selection, crossover and mutation, inspired by the natural reproduction and evolution of the living creatures. However, few published works deal with their application to the global optimization of functions depending on continuous variables. A new algorithm called Continuous Genetic Algorithm (CGA) is pr...

متن کامل

A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm

In this paper, a novel recombination operator, called adaptive hybrid crossover operator (AHX), is designed for tackling continuous multiobjective optimization problems (MOPs), which works effectively to enhance the search capability of multiobjective evolutionary algorithms (MOEAs). Different from the existing hybrid operators that are commonly operated on chromosome level, the proposed operat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Complex Systems

دوره 9  شماره 

صفحات  -

تاریخ انتشار 1995